Bimultiplications and Annihilators of Crossed Modules in Associative Algebras

نویسندگان

چکیده

In this paper, we present a generalization of the concept bimultiplication algebra by defining crossed modules in associative algebras. Using structure, construct actor module algebras, and obtain annihilators as kernel morphism from to its actor. Moreover, link between square, two-dimensional module.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossed Squares and 2-crossed Modules of Commutative Algebras

In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2-crossed modules analogous to that given by Conduché in the group case. We also give an analogue, for commutative algebra, of T.Porter’s [13] simplicial groups to n-cubes of groups which implies an inverse functor to Conduché’s one.

متن کامل

Cyclic Homologies of Crossed Modules of Algebras

The Hochschild and (cotriple) cyclic homologies of crossed modules of (notnecessarily-unital) associative algebras are investigated. Wodzicki’s excision theorem is extended for inclusion crossed modules in the category of crossed modules of algebras. The cyclic and cotriple cyclic homologies of crossed modules are compared in terms of long exact homology sequence, generalising the relative cycl...

متن کامل

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

Annihilators of Permutation Modules

Permutation modules are fundamental in the representation theory of symmetric groups Sn and their corresponding Iwahori–Hecke algebras H = H (Sn). We find an explicit combinatorial basis for the annihilator of a permutation module in the “integral” case — showing that it is a cell ideal in G.E. Murphy’s cell structure of H . The same result holds whenever H is semisimple, but may fail in the no...

متن کامل

Annihilators of tensor density modules

We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain the projective subalgebra, a copy of sl2. The restrictions of the tensor density modules to this subalgebra are duals of Verma modules (of sl2) for Vec(R) and principal series modules...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of new theory

سال: 2021

ISSN: ['2149-1402']

DOI: https://doi.org/10.53570/jnt.905298